

Client Name: Client DOB: Vial Number: MGP00000 Client Sex: Male Referring Account: Sample Admin Notes: Sample Lab Notes: Sample

Sample 00/00/0000

Sample Received: Report Date: 0000 MaxGen PTID#: CLIA Certification:

00/00/0000 00/00/0000 000000000

Consult with a licensed healthcare professional before making changes based upon any information contained within this report. These recommendations and explanations are based upon clinical observation by MaxGen Labs and current medical research. These results are for educational purposes only and not intended to diagnose, treat, or cure any disease or condition. The use of this test and its recommendations have not been approved by the FDA. MaxGen Labs and its staff are not responsible for how this test is used or any damages resulting from its use.

Basic Genetics & Information

Nutrigenomics: The study of how enetic expression is influenced by nutrition. Small variations in genetic structure may require specific nutritional support that is unique to each individual. Genetic testing provides insight to this need.

Genes: Transferred from parent to offspring, genes are the basic unit of heredity. Genes are found on chromosomes and are made up of DNA. Each person has two copies of a gene, one from each parent. Genes are named for the protein they create or the function they have, often being simplified into abbreviations (example: MTHFR – short for <u>methylenetetrahydrof</u>olate <u>reductase</u>).

DNA: Deoxyribonucleic Acid, or DNA, is a molecule within a gene that contains the instructions an organism needs to grow, function, and reproduce. It is the carrier of all genetic information and is made up of chemical base pairs: adenine (A), thymine (T), cytosine (C), guanine (G). The order of sequence determines the information needed to maintain life.

Single Nucleotide Polymorphism (SNPs): A variation in base pair sequencing that may alter the function of a gene. Nutrigenomic testing looks at these variations to determine how a gene may function. Each combination of base pairs may alter the function of a gene in different ways. The variations are described as:

Wild Type – most commonly found pairing in nature; no variation Heterozygous – one variant copy from a parent; one non-variant copy from a parent Homozygous – two variant copies, one from each parent

Vitamin D & Your Genetics

Vitamin D is a fat-soluble vitamin that must be converted in the liver and kidneys. Limited foods supply Vitamin D, so substantial exposure to sunlight or specific supplementation can be used when a deficiency is present. Vitamin D is crucial for calcium concentrations, bone growth, immune function, and the reduction of inflammation.

For daily use, both D2 and D3 forms of Vitamin D are beneficial, but D3 (cholecalciferol) should be used for therapeutic dosing during a deficiency. Supplements between 5,000 IU and 10,000 IU are ideal for daily therapeutic dosing. Daily intake should be between 1,000 – 2,000 IU of Vitamin D or cod liver oil for general wellness.

Ideally, Vitamin D should be absorbed from natural sunlight exposure. Between the hours of 10am – 3pm, UV rays should hit the face, neck, arms, and shoulders for 10-30 minutes at least twice a week (avoid skin burns).

The three VDR SNPs in this test are from a physician poll of the most common SNPs needed in clinical practice. For blood work, practitioners tend to look at 25(OH) D by itself, while other practitioners also look at 1,25(OH)2D. The 1,25-dihydroxyvitamin D is formed from 25(OH)D in the kidneys under the influence of Parathyroid Hormone and specific enzymes; whereas, 25(OH)D is converted in the liver. It is also recommended to measure HbA1c for blood sugar control.

Vitamin D Foods	Vitamin D Testing	Health Conditions
Cod Liver Oil	1,25 OH Vitamin D may be	Rickets
Swordfish	helpful in some complicated	Osteoporosis
Salmon	cases. Your Doctor may order	Cancer
Beef Liver	the following tests.:	Inflammatory Bowel Disease
Egg Yolks	25-hydroxy (OH) vitamin D	Multiple Sclerosis
Cheese	1,25 dihydroxyvitamin D	Type I and II Diabetes
VDR-BSM	VDR-TAQ	VDR-FOK
No variant detected for Vitamin D deficiency.	No variant detected for Vitamin D deficiency.	No variant detected for Vitamin D deficiency.

B12 & Your Genetics Report

Do you get enough Cobalamin, or vitamin B12? Do you take the right form of B12? Since your body does not produce B12, it is important to make sure you get adequate amounts of it in the correct form. B12 is important for a number of processes in the body, especially the production of neurotransmitters, energy, and blood cells.

People often feel better switching to the correct form of B12 based on genetics and/or increasing their consumption. Consider yearly micronutrient testing. Always avoid cyanocobalamin.

B12 Blood Levels

Many genes are associated with decreased serum B12 levels. Increasing supplementation or using dermal or injectable B12 can help bypass a possible genetic issue.

Genes: FUT2 & TCN

You have a risk for low serum Vitamin B12 levels. Use organic acid or homocysteine testing to verify your need for B12.

Methy-B12 Need

Produced by the enzyme MTRR, Methylcobalamin is the main form of B12 used fordetoxification and neurotransmitter production. It is bioactive and can be found in good quality supplements.

Genes: MTRR

You have one heterozygous variation on the MTRR enzyme. This could create a need for B12 supplementation. Use organic acid or homocysteine testing to verify your need for B12.

Adenosyl-B12 Need

Adenosylcobalamin is mainly used to produce energy within the mitochondria. Many people report increased energy with Adeno-B12 supplementation.

Genes: MUT & MMAB

There are no genetic indications that you need Adenosylcobalamin supplementation. Adenosylcobalamin could be used in cases of fatigue.

Methyl-B12-Sensitivity

Some people report sensitivities to methylated B12, including increased aggression and hyperactivity. We can occasionally predict these sensitivities by looking at other variations.

Genes: COMT & VDR

There are no genetic indications for Methylcobalamin sensitivity.

Low B12 Symptoms

Anxiety Pale Skin Smooth Tongue Constipation Diarrhea Heart Palpitations Fatigue Poor Balance Memory loss Neuropathy Tingling feet Depression

Folate & Your Genetics

Folate, or B9, is a vitamin required for numerous processes in the body. DNA replication, neurotransmitter production and degradation, detoxification, and prevention of cardiovascular disease are just a few. It is found naturally in uncooked leafy green vegetables.

Folate - MTHFR

The MTHFR enzyme processes dietary folates into methyl-folate, crucial for methylation and over 200 processes in the body. Low levels of methylfolate have been associated with numerous symptoms and diseases. There are two main variants: C667T and A1298C.

Since MTHFR creates methylfolate, you can supplement with oral methylfolate. This can speed up the methylation cycle, returning detoxification and neurotransmitter production back to normal. This testing and approach has become common in fertility and psychiatric practices.

It is important to start slow and titrate up when using methyl folate. 400mcg is a common starting point for adults. Some research points to benefits from 400mcg to 15mg; however, many people do very well on doses under 2mg. Please see a practitioner for help with dosing.

Your MTHFR Results

Genes: MTHFR

You have one copy of the A1298C MTHFR variation. This is the least influential MTHFR variation and has little effect on the activity of the MTHFR enzyme. It is still recommended to avoid synthetic folic acid.

Avoiding synthetic folic acid and consuming a diet full of green leafy vegetables is important. MethylFolate supplementation may be appropriate if you have symptoms associated with Folate deficiency.

Methylfolate Sensitivity

Some people can be sensitive to methylfolate. In this case, different forms of vitamin B9 may be used. Consider folinic acid and working with a practitioner.

Genes: COMT & VDR

There are no genetic indications for MethylFolate sensitivity.

MTHFR Symptoms

Depression Anxiety ADD/ADHD Miscarriage Cardiovascular Disease Blood Clots Bipolar Schizophrenia Cancer Midline defects And More

Follow Up Testing

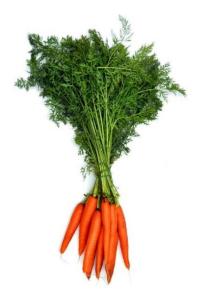
Genes: MTHFR & SCL19A1

Your genetics indicate near normal levels of MethylFolate. RBC Folate can still be low. homocysteineand SAM/SAH ratio tests may be ordered by your doctor.

You have a homozygous variation on one of the Folate receptors. This can lead to low levels of Folate inside the cell.

A RBC Folate test can verify your need for supplementation.

Vitamin A & Your Genetics Expanded


Vitamin A is essential for proper vision, growth, immune function, and gut health. There are two types of vitamin A: retinoids and carotenoids. Carotenoids are found in orange plants, such as carrots, and are precursors to retinoids (the bioavailable form). Retinol is the active form that is required for health.

Vitamin A - BCMO1

When most people think about increasing their vitamin A levels, they typically reach for a carrot or orange-colored vegetable. However, this is a carotenoid, not a retinoid or retinol. Our bodies have to convert carotenoids into retinoids by an enzyme called BCMO1. Some people have issues in BCMO1 that slow down their ability to form retinol from beta carotene. Your test checked for five different variations that might slow down retinal formation within your body. Consider working with a provider to monitor your vitamin levels.

Dietary Sources Of Retinoids

Free range eggs Organic Heavy Cream Shrimp Cod-liver oil Grass fed butter Grass fed beef liver Grass fed beef Wild caught fatty fish

Your Results Genes: BCMO1

You have multiple heterozygous variants on BCMO1. This alone should not lead to Vitamin A deficiency. Test micronutrients yearly to determine your need for supplementation.

Low Vitamin A Symptoms

Vision issues Infertility Mood disorders Skin problems Thyroid dysfunction Growth delays Infections Chronic Infections

High Vitamin A Symptoms

Hair loss Liver damage Mental confusion

Vitamin A Caution

Vitamin A is a fat soluble vitamin and there are studies that show excessive intake can lead to toxic levels. High levels of retinol might contribute to increased levels of heart disease and cancer. Please discuss supplementation with a trained provider and monitor blood retinol levels.

Inflammation & Your Genetics

Inflammation is a natural part of our immune system that is used to protect us; however, it can become overactive. This increase in inflammation can cause many problems, such as cardiovascular, neurological, and autoimmune diseases. The Standard American Diet (SAD) is full of inflammatory foods and chemicals that add to this disease process. Your genes make you more susceptible to inflammation. Maintaining low levels of inflammation is the key to health.

Anti-Inflammatory Foods

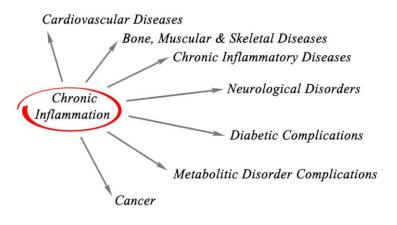
Blueberries Ginger/Turmeric Dark Chocolate Good fats Grass fed butter Free-range eggs Grass fed beef Wild caught fatty fish

Pro-Inflammatory Foods

Sugar Vegetable oils Fried foods Wheat flour Dairy

Bad fats Processed meats Trans fats Fast foods Conventional meats

Other Causes of Inflammation


Lack of sleep	Po
Lack of exercise	In
Lack of rest	Тс
Over training	Fc
5	Se

Poor gut health Infection Toxic exposures Food Sensitivities

Generalized Inflammation

Genes: TNF

You do not have the genetic marker for increased levels of inflammation. There may still be inflammation present.

Labs Your Physician May Order

HS-CRP: High Sensitive C-Reactive Protein ESR: Erythrocyte Sedimentation Rate Omega 3/6 Ratios or Fatty Acid Tests LPS: lipopolysaccharide

Arachidonic Acid

Genes: FADS1

You are at risk for higher levels of the pro-inflammatory fatty acid, arachidonic acid. Consider Omega 3 supplementation and avoid high Omega 6 containing foods. Omega 3:6 ratio testing might be benefitial.

Detoxification & Your Genetics

Every day, we are exposed to hundreds of toxic chemicals in our environment. Our bodies also make toxic metabolic waste that has to be filtered hourly. Many of these pathways can be slowed down by different genetic variations. This section will break down some of your variations.

Insecticide Sensitivity

Organophosphate insecticides are one of the most toxic substances on the planet. They can cause diarrhea, PDD, autism, depression, aggression, and other emotional conditions. Children exposed to these have twice the risk of autism and PDD. Children tend to be more susceptible to insecticides.

Genes: PON1

You are not genetically sensitive to pesticides. They should still be avoided. Consume organic foods and use a water filter.

Acetaminophen

Due to the prevalence of acetaminophen use, knowing your genetic potential for toxic side effects is crucial. It has been associated with liver conditions, asthma, autism, GI issues, acidosis, blood cancers, and immune system depression. These are due to lowered glutathione levels and liver involvement.

Genes: CYP2E1

You are not genetically predisposed for a toxic response to acetaminophen use. You should still consider natural alternatives, as it reduces Glutathione when used.

Glutathione

Glutathione is our master antioxidant and detoxifying molecule. Oxidative stress and toxic exposures can cause low levels of glutathione. Those with genetic predisposition to low levels may be more susceptible to the effects of environmental toxins. MTHFR and methylation SNPs can also affect glutathione levels.

Genes: GPX & GSTP1

You are genetically predisposed to reduced Glutathione production. Consider organic acid testing.

Women's Health

In women, excessive levels of estrogen can lead to many conditions, including anxiety, fertility issues, and cancer. There are certain genetic situations that might limit someone's ability to remove estrogen from the body, which will increase estrogen levels.

Estrogen Levels Genes: COMT & CYP1B1

You have one heterozygous marker associated with conditions in estrogen metabolism. Monitor hormones with your doctor.

Genes: CYP 1b1

4-OH Estradiol

You are not genetically predisposed to metabolizing estrogen down the highly reactive 4-OH pathway. It is still recommended to monitor hormones with your doctor.

APoE & Your Genetics

Apolipoprotein E (APOE) is a gene that codes for a transport lipoprotein that carries fats and cholesterol throughout the body. There are several E types, namely E2, E3, and E4. Both E1 and E5 exist; however, they are extremely rare. Most of the population carries the E3 status, and it is considered neutral for disease risk. Everyone has two E types (example: E2/E2, E3/E4, E4/E4, E3/E4 etc.), where one type is inherited from each parent. APOE status plays a role in cardiovascular disease and Alzheimer's risk. Exercise, especially lifting, climbing, and movement-based exercises are beneficial for all types.

E4 Risk Factors

Alzheimer's Disease Faster progression of MS Traumatic Brain Injury Cardiovascular disease Unable to detoxify heavy metals

E2 Risk Factors & Benefits

Hyperlipoproteinemia Type III Elevated Triglycerides & LDL Insulin & Glucose Concerns Less risk for Alzheimer's Vertebral Fractures Neuro-protective Vascular disease Psoriasis

E4 Diet Recommendations

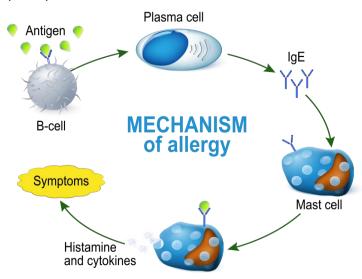
Intermittent Fasting Mediterranean, Low fat, or Paleo Diets Avoid alcohol & saturated fat Limit Seafood that is high in mercury Limit cholesterol intake Consider monitoring iodine levels Consider regular sauna visits

Your APOE Status Genes: APOE

Your results: E3/E4 Please speak with your Physician.

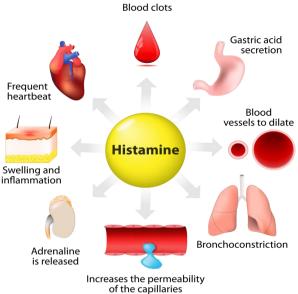
E2 Diet Recommendations

Mediterranean Diet Low Glycemic Diet Intermittent Fasting Avoid Refined Carbs Paleo Diet Low Fat



Histamine & Your Genetics

Histamine is commonly known as an immune system chemical that is released during mast cell degranulation or when exposed to allergens. However, it is also a neurotransmitter in the brain and plays a role in digesting food in the stomach. In humans, histamine is broken down by two main pathways, Histamine N-Methyltransferase (HNMT) and Diamine Oxidase (DAO/AOC1). Excessive histamine can cause numerous issues in the body, and there are some genetic predispositions that enhance these issues.


High Histamine Foods

Alcohol/Ferments Citrus Fruits Dried Fruits Soured Foods Smoked Meats Aged Cheese	Walnuts Cashews Peanuts Spinach Eggplant Shellfish	Bananas Wheat Strawberries Beans Chocolate Food Dyes
Aged Cheese Tomatoes	Shellfish	Food Dyes Food Additives

DAO (AOC1)

The DAO Enzymes is responsible for breaking down dietary histamine and histamine outside of your cells. It requires adequate levels of copper and can be inactivated by certain drugs and curcumin. **Genes: DAO**

You are not genetically predisposed to reduced DAO enzyme activity.

High Histamine Symptoms

Headaches	Nasal Congestion
Migraines	Fatigue/Adrenal Fatigue
Digestive Issues	Irregular Menstrual Cycles
Anxiety	Blood Pressure Issues
Eczema	Nasal Congestion
Other Skin conditions	

HNMT

HNMT is responsible for breaking down histamine inside of your cells and is common in asthma. This enzyme requires adequate levels of SAMe from the methylation cycle. Genes: HNMT

You are not genetically predisposed to increased cellular histamine.

MAO & Your Genetics

ease see your physician before making nutritional changes

Monoamine oxidase (MAO) has two types, A and B, and plays a role in the oxidation of neurotransmitters. MAOA is chiefly responsible for the oxidation of serotonin and norepinephrine, while MAOB oxidizes phenylethylamine. Both oxidize dopamine. Each genetic variation of MAO creates different outcomes of the enzyme. MAO is also found on the X chromosome, so males who inherit the variation are technically hemizygous. Our algorithm, however, reports it as homozygous since we do not know the sex of each person performing this test. If your results suggest you have decreased MAO activity, it is suggested that you avoid cheese and other fermented/aged foods that are high in tyramine.

MAO-A (RS6323)

You have the slower form of the MAO-A Enzyme. If you have symptoms associated with Slow MAO, consider the nutritional support listed below.

MAO-A (RS72554632)

No variants detected. This should not cause symptoms.

MAO-B

Possible decrease in MAO activity. Follow SLOW MAO suggestions below. Possible elevation in histamine. Use Low Tyramine Diet if symptoms occur.

Fast MAO

A fast MAO enzyme will significantly decrease neurotransmitter levels and create symptoms of deficiency. Depression, anxiety, and low mood are common symptoms. Your practitioner may want to try nutraceuticals like St. Johns Wort, 5-HTP, tyrosine, resveratrol, B vitamins, sun and light exposure to help support a healthy mood.

Slow MAO

A slow MAO enzyme will allow for greater levels of neurotransmitters and cause symptoms of excess. Increased aggression and lack of empathy are common. In general, it is recommended to avoid caffeine, smoking, and stress when possible. Utilizing meditation techniques, trying a low tyramine diet, and insuring proper B2, lithium orotate, zinc and hormone levels are all possible options to support a healthy mood.

Low Serotonin	Low Dopamine	High Serotonin	High Dopamine
Anxiety / Depression	Depression / Hopelessness	Headaches	Excessive Energy
Insomnia / Paranoia	Lack of Motivation	Diarrhea	ADD/ADHD
Loss of pleasure	Brain Fog/ Fatigue	Muscle Twitching	Anxiety
Weight Issues	Weight Issues	Confusion	Agitation
Inner rage	Low Libido	Seizures	Insomnia
Support:	GI Issues	High Blood Pressure	Addiction
5-HTP & St. John's Wort	Support: Tyrosine, Bacopa	Support: B2, B5	Support: B2, Methylation &
Low Norepinephrine	Low PEA	High Norepinephrine	High PEA
Brain Fog	Brain Fog	Anxiety	Mind Racing
Depression	Depression	Heart Palpitations	Insomnia
Low Blood Pressure	Difficulty Paying	Sweating	Anxiety
Adrenal Fatigue	Attention	Constipation	Schizophrenia
Support: \/it C			
Support: Vit. C,	Incomplete Thoughts	Support:	Support: Methylation &

COMT & Your Genetics

lease see your physician before making nutritional changes.

Catechol-O-methyltransferase (COMT) is a gene that creates an enzyme that breaks down dopamine, norepinephrine, epinephrine, and estrogen. These chemicals play a major role in mood, stress response, and productivity. Estrogen needs to be balanced and reduced appropriately to avoid issues. COMT does require the methylation cycle, with SAMe and magnesium being required in adequate amounts. It has been observed that individuals with slower COMT tend to be sensitive to methyl donors. In these cases, non-methylated vitamins like Folinic Acid and Hydroxocobalamin might be better options. People who are sensitive to these tend to have mood swings and anger issues. It has also been observed that carriers of the VDR-TAQ variation have additional risks.

COMT V158	BM	COMT	H62H	V	DR-TAQ
You have a fast COMT endencies. If you have cociated with Fast CON e nutritional support li	symptoms /IT, consider	No variants detect not cause sy		sensitivity,	increased Dopamine which can worsen slow and help fast COMT symptoms.
I	Fast COMT			Slow CON	ΊΤ
Fast versions of the with decreased leve dopamine. People have higher pain the operating under adv and have lower leve	els of neurotransmi with this have beer resholds, are capak verse stress (The W	tters like n shown to ble of	increased levels has been shown person's sensitiv Worrier Gene).	of neurotransmitt to lower pain thre vity to stress, and in	ncrease anxiety (The dividuals typically have a
	Low Dopamine			High Dopam	ine
Depression Lack of Motivation Fatigue Focus Issues	Constipation GERD Muscle Cramps	Support : Tyrosine Bacopa	ADD/ADHD Anxiety Excessive Energy	Insomnia Addiction Mania	Support : Riboflavin Vit. C Methylation
	Low Epinephrine			High Epinep	hrine

Depression Restless Leg	Migraines Sleep Disorders	Support : Methionine Tyrosine	Anxiety Sweating Heart Palpitatio	Weight Loss Constipation ons	Support : Adaptogens Phosphatidylserine
	Low Norepinephrin	ne		High Norepinep	hrine
Focus Issues Depression	Brain Fog Low Blood Pressure	Support : Tyrosine Vit. C Copper Balancing	Anxiety Heart Palpitations	Sweating Constipation	Support: Methylation, Riboflavin

Your Genetic Summary

	e Sammary
B12 Levels	• You have a risk for low serum Vitamin B12 levels. Use organic acid or homocysteine testing to verify your need for B12.
Methyl-B12	• You have one heterozygous variation on the MTRR enzyme. This could create a need for B12 supplementation. Use organic acid or homocysteine testing to verify your need for B12.
B12 Sensitivity	There are no genetic indications for Methylcobalamin sensitivity.
Adeno-B12	• There are no genetic indications that you need Adenosylcobalamin supplementation. Adenosylcobalamin could be used in cases of fatigue.
Vitamin A	• You have multiple heterozygous variants on BCMO1. This alone should not lead to Vitamin A deficiency. Test micronutrients yearly to determine your need for supplementation.
Vitamin D	There are no indications of genetic Vitamin D metabolism issues.
Folate/MTHFR	• You have one copy of the A1298C MTHFR variation. This is the least influential MTHFR variation and has little effect on the activity of the MTHFR enzyme. It is still recommended to avoid synthetic folic acid.
Folate Sensitivity	There are no genetic indications for MethylFolate sensitivity.
Dietary Histamine	You are not genetically predisposed to reduced DAO enzyme activity.
Cellular Histamine	No variant detected that increases cellular histamine.
DHA Fish Oil	• You are not genetically predisposed to a deficiency in Omega 3 Fatty Acids. Regular intake of fish or omega-3 oils should be consumed.
Phos-Choline	• You have two of the four genetic markers associated with Phosphatidylcholine deficiency. Consider supplementing if support is needed for brain or liver health and pregnancy.
Arachidonic Acid	• You are at risk for higher levels of the pro-inflammatory fatty acid, arachidonic acid. Consider Omega 3 supplementation and avoid high Omega 6 containing foods. Omega 3:6 ratio testing might be benefitial.
Inflammation	• You do not have the genetic marker for increased levels of inflammation. There may still be inflammation present.
Estrogen levels	• You have one heterozygous marker associated with conditions in estrogen metabolism. Monitor hormones with your doctor.
Bad Estrogen	• You are not genetically predisposed to metabolizing estrogen down the highly reactive 4-OH pathway. It is still recommended to monitor hormones with your doctor.
Pesticides	• You are not genetically sensitive to pesticides. They should still be avoided. Consume organic foods and use a water filter.
Glutathione	You are genetically predisposed to reduced Glutathione production. Consider organic acid testing.
Probiotic	• There are no probiotic recommendations based on your results. See the box below if there are additional recommendations.
Secretor Status	FUT2 Secretor. There are no probiotic recommendations associated with this variant.

SNP Report

Gene	RS#	Result	Client	Minor	Short Description
AHCY-01	rs819147	Wild Type	TT	C - 31%	No genetic cause for low homocysteine or glutathione.
APOE	rs429358	-+ Heterozygous	СТ	C - 15%	See APOE page for details. If rs7412 is T = E1 (Rare) If RS7412 is C = E4
APOE	rs7412	Wild Type	СС	T - 8%	See APOE page for details. If rs429358 is C = E4 If rs 429358 is T = E3 (Normal)
BCMO1	rs11645428	-+ Heterozygous	GA	A - 15%	Genetic cause for Vitamin A deficiency. See Vitamin A page for details.
BCMO1	rs12934922	Wild Type	AA	T - 22%	No genetic cause for Vitamin A deficiency.
BCMO1	rs6564851	-+ Heterozygous	GT	G - 47%	Genetic cause for Vitamin A deficiency. See Vitamin A page for details.
BCMO1	rs7501331	-+ Heterozygous	СТ	T - 21%	Genetic cause for Vitamin A deficiency. See Vitamin A page for details.
BCMO1	rs6420424	Wild Type	GG	A - 43%	No genetic cause for Vitamin A deficiency.
CBS	rs28934891	Wild Type	CC	T00%	No genetic cause for reduced CBS enzyme activity.
CBS	rs4920037	Wild Type	GG	A - 13%	No genetic cause for reduced CBS enzyme activity.
CBS	rs2851391	Wild Type	СС	T - 38%	No genetic cause for reduced CBS enzyme activity.
CBS 360	rs1801181	++ Homozygous	AA	A - 29%	Genetic cause for upregulated CBS enzyme activity. Test homocysteine.
CBS 699	rs234706	Wild Type	GG	A - 19%	No genetic cause for upregulated CBS enzyme activity.
COMT 61 P199P	rs769224	Wild Type	GG	A - 2%	No genetic cause for down regulation of COMT.
СОМТ Н62Н	rs4633	Wild Type	CC	т - 237%	No genetic cause for down regulation of COMT.
COMT L136L	rs4818	-+ Heterozygous	GC	G - 29%	No genetic cause for down regulation of COMT.
COMT V158M	rs4680	Wild Type	GG	A - 36%	Fast COMT (Warrior) gene. See COMT page for details.
CYP1B1 L432V	rs1056836	-+ Heterozygous	CG	G - 42%	No genetic cause for elevated 4-OH estradiol. Test hormones with your doctor.
CYP2E1 *6	rs6413432	Wild Type	TT	A - 16%	No genetic cause for NAPQI toxicity from Acetaminophen.
DAOA/DAAO	rs3741775	-+ Heterozygous	CA	C - 31%	Genetic risk for Schizophrenia. Test Vitamin B2 levels. Consider SAMe.
DAO (AOC1)	rs10156191	Wild Type	CC	T - 31%	No genetic cause for reduced DAO enzyme activity.
DHFR	rs1643649	-+ Heterozygous	СТ	C - 22%	Genetic cause for low tetrahydrofolate. Avoid Bactrim, EGCG, and grape seed.
Factor 5	rs6025	-+ Heterozygous	СТ	T00%	Genetic cause for 4x risk of thrombosis. Consult with your doctor.
FADS1	rs174548	Wild Type	CC	G00%	No genetic cause for phosphatidylcholine deficiency.
FADS1(MYRF)	rs174537	Wild Type	GG	Т - 30%	Genetic cause for high Arachidonic Acid levels. Limit Omega 6 foods.
FADS2	rs1535	Wild Type	AA	G - 32%	No genetic cause for decreased DHA production. Associated with High IQ.
FOLR2	rs651933	Wild Type	GG	A - 45%	No genetic cause for intracellular folate deficiency.
FUT2	rs602662	Wild Type	GG	A - 32%	Genetic cause for low serum B12 levels. See B12 page for details.
FUT2	rs492602	Wild Type	AA	G - 32%	No genetic cause for B12 deficiency.
FUT2 W143X	rs601338	Wild Type	GG	A - 32%	Norovirus susceptibility. Secretor status.
G6PD	rs1050828	Wild Type	CC	Т - 3%	No genetic need to avoid IV Vitamin C & H202.
G6PD	rs1050829	Wild Type	TT	C - 9%	No genetic need to avoid IV Vitamin C & H202.
G6PD	rs5030868	Wild Type	GG	A .00%	No genetic need to avoid IV Vitamin C & H202.
GPX1	rs1050450	Wild Type	GG	A - 2%	No genetic cause for glutathione deficiency and heavy metal toxicity.
GSTP1	rs1138272	Wild Type	CC	Т - 3%	No genetic cause for inability to detoxify.
GSTP1	rs1695	-+ Heterozygous	GA	G - 35%	Genetic cause for inability to detoxify. Consider glutathione supplementation.
HFE	rs1799945	Wild Type	СС	G - 7%	No hemochromatosis risk
HFE	rs1800562	Wild Type	GG	A - 1%	No hemochromatosis risk
HFE	rs1800730	Wild Type	AA	T00%	No hemochromatosis risk
HNMT	rs1050891	Wild Type	AA	G - 20%	No genetic cause for elevated serum levels of histamine.
LRRK2	rs34637584	Wild Type	GG	A00%	No genetic risk of Parkinson's Disease.

MaxGen

Gene	RS#	Result	Client	Minor	Short Description
MAOA T1410C	rs1137070	Wild Type	СС	T - 44%	Genetic cause for reduced MAO activity & elevated serotonin levels.
MAOA	rs6323	Wild Type	TT	G - 37%	Genetic cause for SLOW MAO-a status. See MAO page for details.
MAOA	rs72554632	Wild Type	СС	T00%	No genetic cause for MAO deficiency.
МАОВ	rs1799836	++ Homozygous	СС	C - 45%	Genetic cause for decreased MAO-b activity. See MAO page for details.
**Notice: MAO is	a X linked gene	and is only passed	down fror	n the mat	ernal line. Male Children are technically "hemizygous."
MAT1A R264H	rs72558181	Wild Type	СС	T00%	No genetic cause for hypermethioniemia.
ММАВ	rs2287182	Wild Type	СС	T - 13%	No genetic cause for methylmalonic acidemia.
MTHFS	rs6495446	-+ Heterozygous	СТ	T - 29%	Genetic cause for folinic acid or Leucovorin avoidance. See Folate page.
MTHFD1	rs2236225	++ Homozygous	AA	A - 34%	Potential cause for 5,10 methylenetetrahydrofolate deficiency.
MTHFR A1298C	rs1801131	-+ Heterozygous	GT	G - 25%	Genetic cause for Folate deficiency. See Folate page for details.
MTHFR C677T	rs1801133	Wild Type	GG	A - 24%	No genetic cause for Folate deficiency.
MTR	rs1805087	Wild Type	AA	G - 21%	Decreased activity of MTR. Methyl B12 may be useful if Homocysteine is high.
MTRR	rs1801394	-+ Heterozygous	GA	G - 36%	Genetic cause for B12 deficiency. See B12 page for details. Test homocysteine.
MTRR	rs1532268	Wild Type	СС	T - 27%	No genetic cause for B12 deficiency.
MUT	rs1141321	-+ Heterozygous	СТ	T - 26%	Genetic cause for methylmalonic acidemia. Consider adenosylcobalamin.
MUT	rs9369898	-+ Heterozygous	GA	G - 40%	Genetic cause for methylmalonic acidemia. Consider adenosylcobalamin.
NOS3	rs1799983	-+ Heterozygous	GT	T - 17%	Genetic risk for small artery disease due to low Nitric Oxide. Use I-arginine.
NOS3	rs2070744	-+ Heterozygous	СТ	C - 23%	No genetic cause for cardiovascular disease.
NQO1	rs1800566	Wild Type	GG	A - 28%	No genetic cause for increased oxidative stress.
PEMT	rs4244593	Wild Type	GG	T - 42%	No genetic cause for phosphatidylcholine deficiency.
PEMT	rs4646406	++ Homozygous	AA	A - 28%	Genetic cause for phosphatidylcholine deficiency. Consider supplementation.
PEMT	rs7946	++ Homozygous	TT	Т - 30%	Genetic cause for phosphatidylcholine deficiency. Consider supplementation.
PON1 Q192R	rs662	Wild Type	TT	C - 45%	No tendency for insecticide sensitivity.
Prothrombin (F2)	rs1799963	Wild Type	GG	A00%	No genetic cause for thrombosis or cerebral stroke.
SHMT1	rs1979277	Wild Type	GG	A - 23%	No genetic cause for inadequate methylation.
SLC19A1	rs1051266	++ Homozygous	TT	T - 48%	Genetic cause for Folate deficiency. Test RBC Folate.
SOD1	rs2070424	Wild Type	AA	G - 24%	No genetic cause for high levels of SOD1.
SOD1	rs4998557	Wild Type	GG	A - 33%	No genetic cause for oxidative stress.
SOD2	rs2758331	-+ Heterozygous	CA	A - 33%	Genetic cause of oxidative stress. Consider SOD supplementation.
SOD2	rs4880	-+ Heterozygous	AG	G - 41%	Genetic cause of oxidative stress. Consider SOD supplementation.
SOD3	rs1799895	Wild Type	СС	G - 2%	No genetic cause for oxidative stress.
SUOX(A628C)	rs7297662	-+ Heterozygous	GA	A - 47%	Possible sulfite oxidase deficiency. Use molybdenum supplementation.
SUOX(S370S)	rs773115	Wild Type	СС	G00%	No genetic cause for sulfite oxidase deficiency.
TCN1	rs526934	Wild Type	AA	G - 19%	No genetic cause for B12 deficiency.
TCN2	rs1801198	Wild Type	СС	G - 42%	No genetic cause for B12 deficiency.
TNF	rs1800629	Wild Type	GG	A - 9%	No genetic cause for high inflammation.
VDR TAQ	rs731236	Wild Type	AA	G - 38%	No genetic cause for Vitamin D deficiency.
VDR-BSM	rs1544410	Wild Type	СС		No genetic cause for Vitamin D deficiency.
VDR-FOK	rs2228570	Wild Type	GG	A - 32%	No genetic cause for Vitamin D deficiency.

Client: Your genotype. Minor: The genotype that is found least in nature.

Wild Type: The genotype that is found most often in nature, this is reported as green. This isn't always ideal.

Homozygous: This means you tested for both copies of the minor type allele. This typically has more severe issues.

Heterozygous: : This means you tested for one copy of the minor allele and one copy of the wild type allele.

	SNP Information
AHCY-01 rs819147 Wild Type	Adenosyl homocysteinase This enzyme is responsible for the breakdown of the amino acid, methionine. Health risk with this gene mutation is hypermethioninemia, which is associated with a short stature, low homocysteine, and low glutathione. Consider testing.
APOE rs429358 -+ Heterozygous rs7412 Wild Type Your results: E3/E4 Please speak with your Physician.	The APoE gene codes for a protein responsible for moving cholesterol and fat around the body. Issues here can result in cardiovascular conditions and is a risk factor for Alzheimer's and dementia. APoE status is technically defined by these two SNPs, rs429358 and <u>rs7412</u> . e1 = rs429358(C or +) & rs7412 (T or +) e2 = rs429358(T or -) & rs7412(T or +) e3 = rs429358(T or -) & rs7412(C or -) e4 = rs429358(C or +) & rs7412(C or -) e4 = rs429358(C or +) & rs7412(C or -) E1 is extremely rare. E2's have a greater risk for vascular disease and hyperlipoproteinemia, cholesterol and triglyceride levels can be 2x to 3x higher, and is implicated in Parkinson's disease. E2's tend to respond well to high carb, low fat diets. E3's is the neural type and is found in humans around 78% of the time. E4's is implicated in Alzheimer's disease, impaired cognitive function, reduced hippocampal volume within the brain, faster progression of MS and associated with higher levels of Vit. D. E4's tend to respond well to hormone replacement therapy and high carb, low fat diets. Discuss this mutation with your PCP or cardiologist.
BCMO rs11645428 -+ Heterozygous rs12934922 Wild Type rs6564851 -+ Heterozygous rs7501331 -+ Heterozygous rs6420424 Wild Type	beta-carotene oxygenase 1 The BCMO gene codes for the enzyme responsible for creating Vitamin A from dietary carotenoids. SNP's here can slow down the conversion of beta carotene from the diet into Vitamin A. These individuals can have low vitamin A levels while eating a diet rich in carotenoids. Interesting enough, this SNP can cause someone's skin to turn orange if they eat a large amount of beta carotene. These SNPs may lead someone to needing Retinyl Palmitate to bypass this conversion problem. This becomes increasingly useful during times of sickness because of the necessity for vitamin A for the immune system. Discuss Vitamin A supplementation with your physician or nutritional consultant.

	S	cystathionine beta-synthase
rs28934891	Wild Type	CBS is a gene that encodes the enzyme cystathionine beta-synthase, which is responsible for
rs4920037	Wild Type	using vitamin B6 to convert the amino acids homocysteine and serine to cystathionine.
rs2851391	Wild Type	Health conditions associated with this gene include homocystinuria. When homocysteine
		levels are affected, we see skeletal abnormalities, cognitive issues, eye problems, and
rs1801181 (360)	++ Homozygous	abilitinal blood clotting. It is important to get your nonocysteme levels checked yearly,
rs234706 (699)	Wild Type	especially if this mutation is present. It is not a common practice for physicians to order
		homocysteine levels, so one must ask for it. Also, consider getting your B6 levels checked
		yearly.
		CBS SNPs are typically considered to slow down the CBS enzyme, potentially causing elevated
		homocysteine and low levels of the master antioxidant glutathione. However, many consider
		RS1801181 (CBS 360) and RS234706 (CBS 699) to be up regulated SNPs. If CBS is truly
		upregulated it can cause excess ammonia levels and sulfite levels. Gut health becomes
		paramount in ammonia removal. Many products on the market are designed to increase
		butyrate within the colon. Butyrate helps remove ammonia from the body and is commonly
		assessed on extensive stool testing. As well in the case of a CBS upregulation, the neurotoxic
		chemical, sulfite can increase. Sulfite is broken down by the enzyme SUOX. Maximized
		Genetics is one of the only labs who look at SNPs within the SUOX gene. These SNPs could potential increased sulfite levels even further.
		CBS upregulations is also clinically seen with toxic compounds and when the body's
		glutathione levels become low. Focusing on lowering toxin exposure and gut health should be
		highly considered.
CON	ЛТ	COMT is a gene (with multiple forms) that codes for the enzyme catechol-O-
		methyltransferase, which is specifically used to break down neurotransmitters in
rs769224	Wild Type	
		the brain, kidneys, liver, and blood. These neurotransmitters play an important role
rs4633	Wild Type	the brain, kidneys, liver, and blood. These neurotransmitters play an important role in the pre-frontal cortex of the brain, where impulsivity, planning, short term
rs4818	Wild Type -+ Heterozygous	in the pre-frontal cortex of the brain, where impulsivity, planning, short term
	Wild Type	in the pre-frontal cortex of the brain, where impulsivity, planning, short term
rs4818	Wild Type -+ Heterozygous	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are
rs4818	Wild Type -+ Heterozygous	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene.
rs4818	Wild Type -+ Heterozygous	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental
rs4818	Wild Type -+ Heterozygous	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the
rs4818	Wild Type -+ Heterozygous	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the COMT V158M snp. Other disorders that may be related are bipolar disorder, eating
rs4818	Wild Type -+ Heterozygous	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the COMT V158M snp. Other disorders that may be related are bipolar disorder, eating disorders, OCD, panic disorders, and anxiety.
rs4818	Wild Type -+ Heterozygous	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the COMT V158M snp. Other disorders that may be related are bipolar disorder, eating disorders, OCD, panic disorders, and anxiety. Research suggests that this gene can be used to choose various medications related to ADHD. Pain response may also be related to this mutation.
rs4818	Wild Type -+ Heterozygous	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the COMT V158M snp. Other disorders that may be related are bipolar disorder, eating disorders, OCD, panic disorders, and anxiety. Research suggests that this gene can be used to choose various medications related to ADHD. Pain response may also be related to this mutation. If this gene mutation is present, note that stress is a driver for inflammation and
rs4818	Wild Type -+ Heterozygous	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the COMT V158M snp. Other disorders that may be related are bipolar disorder, eating disorders, OCD, panic disorders, and anxiety. Research suggests that this gene can be used to choose various medications related to ADHD. Pain response may also be related to this mutation. If this gene mutation is present, note that stress is a driver for inflammation and disease. Work with your functional medicine practitioner to discuss lowering
rs4818	Wild Type -+ Heterozygous	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the COMT V158M snp. Other disorders that may be related are bipolar disorder, eating disorders, OCD, panic disorders, and anxiety. Research suggests that this gene can be used to choose various medications related to ADHD. Pain response may also be related to this mutation. If this gene mutation is present, note that stress is a driver for inflammation and
rs4818	Wild Type -+ Heterozygous	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the COMT V158M snp. Other disorders that may be related are bipolar disorder, eating disorders, OCD, panic disorders, and anxiety. Research suggests that this gene can be used to choose various medications related to ADHD. Pain response may also be related to this mutation. If this gene mutation is present, note that stress is a driver for inflammation and disease. Work with your functional medicine practitioner to discuss lowering
rs4818	Wild Type -+ Heterozygous Wild Type	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the COMT V158M snp. Other disorders that may be related are bipolar disorder, eating disorders, OCD, panic disorders, and anxiety. Research suggests that this gene can be used to choose various medications related to ADHD. Pain response may also be related to this mutation. If this gene mutation is present, note that stress is a driver for inflammation and disease. Work with your functional medicine practitioner to discuss lowering inflammation throughout the body by creating a healthy diet and lifestyle. Also,
rs4818 rs4680	Wild Type -+ Heterozygous Wild Type	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the COMT V158M snp. Other disorders that may be related are bipolar disorder, eating disorders, OCD, panic disorders, and anxiety. Research suggests that this gene can be used to choose various medications related to ADHD. Pain response may also be related to this mutation. If this gene mutation is present, note that stress is a driver for inflammation and disease. Work with your functional medicine practitioner to discuss lowering inflammation throughout the body by creating a healthy diet and lifestyle. Also, consider an organic acids test to look for neurotransmitter levels.
rs4818 rs4680 CYP1	Wild Type -+ Heterozygous Wild Type	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the COMT V158M snp. Other disorders that may be related are bipolar disorder, eating disorders, OCD, panic disorders, and anxiety. Research suggests that this gene can be used to choose various medications related to ADHD. Pain response may also be related to this mutation. If this gene mutation is present, note that stress is a driver for inflammation and disease. Work with your functional medicine practitioner to discuss lowering inflammation throughout the body by creating a healthy diet and lifestyle. Also, consider an organic acids test to look for neurotransmitter levels.
rs4818 rs4680 CYP1	Wild Type -+ Heterozygous Wild Type	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the COMT V158M snp. Other disorders that may be related are bipolar disorder, eating disorders, OCD, panic disorders, and anxiety. Research suggests that this gene can be used to choose various medications related to ADHD. Pain response may also be related to this mutation. If this gene mutation is present, note that stress is a driver for inflammation and disease. Work with your functional medicine practitioner to discuss lowering inflammation throughout the body by creating a healthy diet and lifestyle. Also, consider an organic acids test to look for neurotransmitter levels. Cytochrome P450 family 1 subfamily B member 1 This gene encodes for an enzyme that is responsible for detoxing drugs and fats. Mutations
rs4818 rs4680 CYP1	Wild Type -+ Heterozygous Wild Type	in the pre-frontal cortex of the brain, where impulsivity, planning, short term memory, and emotions are controlled. Dopamine and norepinephrine levels are particularly affected by mutations in this gene. Health concerns related to this gene mutation generally revolve around mental health disorders. Particularly, schizophrenia has been related to a mutation in the COMT V158M snp. Other disorders that may be related are bipolar disorder, eating disorders, OCD, panic disorders, and anxiety. Research suggests that this gene can be used to choose various medications related to ADHD. Pain response may also be related to this mutation. If this gene mutation is present, note that stress is a driver for inflammation and disease. Work with your functional medicine practitioner to discuss lowering inflammation throughout the body by creating a healthy diet and lifestyle. Also, consider an organic acids test to look for neurotransmitter levels. Cytochrome P450 family 1 subfamily B member 1 This gene encodes for an enzyme that is responsible for detoxing drugs and fats. Mutations in this gene may lead to early onset glaucoma.

LADJ	
CYP2E1 rs6413432 (*6) Wild Type	Cytochrome P450 family 2 subfamily E member 1. This gene encodes for an enzyme that is responsible for detoxifying drugs like acetaminophen (Tylenol), ethanol, chlorzoxazone, and sevoflurane. These two SNPs, *5b and *6, increase the activity of the CYP2E1 enzyme. This enzyme speeds up conversion of acetaminophen into a toxic metabolite, NAPQI. Numerous studies show the connection between acetaminophen and liver damage, mitochondrial conditions, depletion of glutathione, neuronal death, ADHD, asthma, autism, kidney failure, gastroschisis, blood cancers, and numerous other conditions. Based upon current research, acetaminophen should be used with caution. Persons with these two mutations, could be at increased risk for oxidative/toxic damage from acetaminophen.
DAOA/DAAO rs3741775 -+ Heterozygous	DAO/DAAO (rs3741775) should not be confused the DAO(AOC1) gene. It is common amongst "genetic experts" and websites to get these confused. DAAO is D-Amino-Acid Oxidase and breaks down D-Amino acids, especially targeting D-Serine. The DAO(AOC1) enzyme targets extracellular histamine and is a completely different gene. The DAAO SNP is assumed to be an upregulation, meaning the enzyme is faster than normal. This creates an issue with lack of D-Serine. D-Serine is a NMDA receptor agonist and this SNP can result in a less NMDA activity which has been associated with schizophrenia. There can also be disruptions in glutamate receptor stimulation as well. And lastly, it's believed that SNPs here can potentially increase oxalate production. If symptoms of high oxalates are present you may want to consider a low oxalate diet. People with DAAO sometimes respond favorably to Piracetam (500mg 2x a day), Vitamin C, and SAMe. And once again, do not get this SNP confused with AOC1.
DAO(AOC1) rs10156191 Wild Type	DAO/AOC1 is an enzyme that degrades extracellular histamine. The SNP tested is assumed to downregulate of the activity of DAO, per current research. This can result in increased levels of histamine and excess histamine symptoms. The DAO enzyme is commercially available for supplementation and should be considered if laboratory histamine ranges are elevated along with this SNP. DAO supplementation has the potential to created ammonia and hydrogen peroxide. Consider catalase and butyrate supplementation if this becomes a problem. DAO is a copper and B6 dependent enzyme so these should be evaluated as well. Finally, a low histamine diet should be discussed with a physician or nutritional expert.
DHFR rs1643649 -+ Heterozygous	Dihydrofolate reductase This gene mutation is associated with megaloblastic anemia, which can cause seizures and learning difficulties. Avoid the use of folic acid and the antibiotic Bactrim. Folinic acid can help bypass this enzyme SNP.
Factor 5 rs6025 -+ Heterozygous	Factor 5 Mutation in this gene leads to possible venous thromboembolism. Warning: tamoxifen used for breast cancer treatment in a female with this gene mutation may lead to thromboembolism.

MaxFunction Professional Series

rs174548 Wild Type rs174537 Wild Type rs1535 Wild Type phosphatidylcholine may hacetyl-choline, which is exits considered beneficial for of every cell membrane, present, avoid consumption of phosp. A second FADS1 gene (rs1 present, avoid consumption Examples of Omega 6 fatty grains FADS2 FADS2 (RS1535) rs1535 Wild Type FOLR2 FOLR2 rs6551933 Wild Type FOLR2 FOLR2 rs6521933 Wild Type FOLR2 FOLR2 rs602662 Wild Type rs602662 Wild Type rs601338 Wild Type	e fatty acid unsaturation. If present, low levels of be present. Phosphatidylcholine is needed as a precursor to tremely important for neurological function. Choline, in general, r memory, motivation, and muscle function. As an essential part people with this gene mutation may want to consider
FADS2 FADS2 (RS1535) rs1535 Wild Type FOLR2 FOLR2 rs651933 Wild Type FOLR2 FOLR2 rs651933 Wild Type FOLR2 FOLR2 rs651933 Wild Type FOLR2 Folate receptor beta This gene codes folate rec which can block the reduc this SNP, but some cite its cerebral folate transport of placenta. FUT2 rs602662 Wild Type rs492602 Wild Type rs601338 Wild Type	to higher IQ in breastfed babies and hyperactivity in children. If eent, consider taking a high quality fish oil, specifically DHA. ceptors on the cell membrane. It has a high affinity for folic acid, ction of bioavailable folate. Research is currently limited about s association to neural tube defects, rheumatoid arthritis, and
s6551933 Wild Type Folate receptor beta This gene codes folate recevent which can block the reduct this SNP, but some cite its cerebral folate transport of placenta. FUT2 s602662 Wild Type FUT2 s492602 Wild Type This gene is associated with may have a deficiency or rs601338, he/she may be	ction of bioavailable folate. Research is currently limited about s association to neural tube defects, rheumatoid arthritis, and
s602662 Wild Typefucosyltransferase 2s492602 Wild TypeThis gene is associated wi may have a deficiency or rs601338, he/she may be	
	ith vitamin B12 levels. When this mutation is present, a person an increase in B12. If a person specifically has a mutation in immune from Norovirus, but it creates potential gut dysbiosis. sesting and supplementation with methylcobalamin.
s1050829 Wild Typestress. Mutations in this gs5030868 Wild Typewhich can lead to hemolyC and Hydrogen Peroxide	ydrogenase ed from this gene helps protect the red blood cell from oxidative gene create glucose-6-phosphate dehydrogenase deficiency, tic anemia and/or neonatal jaundice. Fava beans and IV vitamin (H202) need to be avoided with this mutation. Discuss this with ertain medications will make this worse.

GPX1 rs1050450 Wild Type	glutathione peroxidase 1 With a mutation in this SNP, one has the potential for glutathione deficiency. Glutathione is protective against oxidative cellular damage, but when deficient, multiple diseases can occur. Research states that the following diseases can be linked to this gene mutation: brain tumors, breast cancer, osteoporosis, selenium deficiency induced osteoporosis, and cardiovascular risk associated with diabetes. Consider glutathione supplementation.
GSTP1 rs1138272 Wild Type rs1695 -+ Heterozygous	Glutathione S-Transferase Pi 1 is a gene responsible for the pi class of enzymes responsible for detoxification of xenobiotics in the body. With a mutation in this gene, a person may be more susceptible to cancers. Consider glutathione testing and supplementation.
HFE rs1799945 Wild Type rs1800562 Wild Type rs1800730 Wild Type	This class of genes is responsible for hereditary hemochromatosis, which causes difficulty with iron metabolism. This gene creates hepcidin, which regulates iron. Symptoms of hemochromatosis include issues with joints, skin, liver, heart, thyroid, and reproductive organs. People with this gene mutation may not notice issues until their 40's or later. Check iron levels, liver enzymes, and other standard lab work on a regular basis.
HNMT rs1050891 Wild Type	Histamine N-Methyltransferase This gene encodes for the enzyme histamine n-methyltransferase, which is found in cytosol and uses a major methyl donor. In the brain, histamine is a major neurotransmitter, and in the gut is controlled by DAO. Health conditions associated with a mutation in this gene include asthma and mental retardation. In ADHD children, certain food additives can be troublesome, including all food dyes and sodium benzoate.
LRRK2 rs34637584 Wild Type	This gene is associated with the development of Parkinson's. If this gene is present, research suggests a 15% chance of developing Parkinson's by age 60, 21% by age 70, and 32% chance by age 80. A high fat, low carb diet may provide some protection. We suggest getting nutrient levels tested on a yearly basis, and pay close attention to B-vitamin levels. Work with a provider who can come up with a specific diet plan, and order the Nutrigenomic Panel to understand other genetic risks involved.

MAO-A rs1137070 Wild Type rs6323 Wild Type rs72554632 Wild Type MAO-B rs1799836 ++ Homozygous	MAOA & MAOB Monoamine Oxidase A and B are enzymes involved in the breakdown of neurotransmitters (serotonin, dopamine, norepinephrine, etc.). When the rs72554632 variant is present, a person may have monoamine oxidase deficiency (aka Brunner Syndrome), which causes a build of neurotransmitters in the brain. This can lead to symptoms such as impulsivity, aggression, depression, and other psychiatric issues. Considered a male issue, boys tend to be diagnosed as autistic or ADHD. Other concerns related to this gene mutation include weak muscles, repetitive hand movements, behavioral and/or developmental delays, and panic disorders (especially in females). Cheese appears to make symptoms worse. Research suggests that these genes may be connected to Parkinson's as well. If this gene mutation is present, consider organic acid testing, neurotransmitter testing, and nutrient deficiency testing on a yearly basis. The gut-brain axis needs to be monitored closely. We report the G allele for rs 6323 as the minor allele per dbsnp and the research we reviewed indicated the G allele as being the minor and more problematic allele (increases the MAO activity). This is a highly researched SNP and some other reporting and testing companies for some reason report the opposite for this SNP.
MAT1A rs72558181 Wild Type	Methionine Adenosyl transferase 1A gene mutations may create hypermethioninemia, a condition that can have significant neurological delays. Symptoms include muscle weakness, liver problems, delay in motor skills, and a cabbage smell from breath and sweat. With a mutation in this gene, diets high in protein cause a build up in the amino acid, methionine. Many people may not even realize they have this condition. Consider a lower protein diet as it relates to the rest of your genetic profile.
MMAB rs2287182 Wild Type	A gene mutation here causes methylmalonic academia, which is a condition that creates difficulty in breaking down proteins and lipids. Adenosylcobalamin is the active mitochondrial form of B12 needed to create the enzyme methylmalonyl CoA mutase. Motor and other developmental delays may be of immediate concern with this genetic mutation, and long term mitochondrial issues may occur. Consider taking Adenosylcobalamin for your B12 needs.
MTHFS rs6495446 -+ Heterozygous	Methenyltetrahydrofolate Synthetase People with this gene mutation should avoid folinic acid.
MTHFD1 RS2236225 ++ Homozygous	methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 If a mutation in this gene is present, a person may have low serum levels of folate (vitamin B9). Folic acid should be avoided. Health risks include neural tube defects and colorectal cancer. Levels are made worse with additional MTHFR mutations.

MaxGen

MaxGen	C MaxFunction Professional Series
MTHFR rs1801133 C677T Wild Type	 methylenetetrahydrofolate reductase The MTHFR gene is responsible for coding the enzyme that processes amino acids, namely homocysteine and methionine, through the conversion of various forms of folate (vitamin B9). Several conditions have been associated with mutations in the MTHFR gene: homocystimuria, anencephaly, spina bifida, glaucoma, high blood pressure, heart disease, psychiatric disorders, and various cancers. Research in varied and conflicting as it relates to MTHFR mutations and their impact on disease. While one can find many associations between the gene and certain conditions, reproducibility of such research is virtually non-existent. When homocysteine levels are affected, we see skeletal abnormalities, cognitive issues, eye problems, and abnormal blood clotting. This alone may be attributed to a link between MTHFR and health conditions. It is important to get your homocysteine levels checked yearly, especially if this mutation is present. It is not a common practice for physicians to order homocysteine levels, so one must ask for it. As a part of the methylation cycle, MTHFR mutations can affect hundreds of chemical conversions throughout the body. Multiple nutrients are involved in this cycle, but close attention is given to Folate (B9), Cobalamin (B12), P5P (B6), and Riboflavin (B2). It is important to check nutrient status yearly as well. Work with a practitioner who is proficient in both serum and intracellular lab work. Currently, attention is given to the two main forms of MTHFR, 677 and 1298, with significantly more importance being placed on 677. There are many more forms of MTHFR, but they have no clinical significance yet. The type of mutation, both by rsid and whether it is homozygous or heterozygous, determines the effects one has. However, keep in mind that a genetic mutation does not have to be present to have difficulties with methylation or any named health condition. Attention must be given to diet and lifestyle, as
MTR rs1805087 Wild Type	5-methyltetrahydrofolate-homocysteine methyltransferase This gene encodes for the enzyme, methionine synthase, which is needed for the metabolism of methionine, and amino acid. It requires the use of methylcobalamin (an active form of B12). This gene mutation can lead to homocystinuria. When homocysteine levels are affected, we see skeletal abnormalities, cognitive issues, eye problems, and abnormal blood clotting. It is important to get your homocysteine levels checked yearly, especially if this mutation is present. It is not a common practice for physicians to order homocysteine levels, so one must ask for it. This genetic mutation has also been suggested in Down Syndrome formation.
	Page 22

MaxFunction Professional Series

MaxGen	C MaxFuncti Professional Se
MTRR 1801394 -+ Heterozygous 1532268 Wild Type	5-methyltetrahydrofolate-homocysteine methyltransferase reductase This gene encodes for the enzyme, methionine synthase reductase, which is needed for the metabolism of methionine synthase. This gene mutation can lead to homocystinuria. When homocysteine levels are affected, we see skeletal abnormalities, cognitive issues, eye problems, and abnormal blood clotting. It is important to get your homocysteine levels checked yearly, especially if this mutation is present. It is not a common practice for physicians to order homocysteine levels, so one must ask for it. This genetic mutation has also been suggested in Down Syndrome formation.
MUT 1141321 -+ Heterozygous 19369898 -+ Heterozygous	methylmalonyl CoA mutase This gene encodes for an enzyme that is responsible for breaking down lipids and proteins for energy use in the mitochondria. With a mutation here, methylmalonic acidemia is a concern. Symptoms occur in early infancy and include failure to thrive, lethargy, vomiting, weak muscle tone, and fatigue. If severe, survival expectation is low. Long term effects may be pancreatitis, kidney disease, and intellectual disabilities. Consult an expert geneticist for official diagnosis. MUT mutations can benefit from additional Adeno-B12.
NOS3 1799983 -+ Heterozygous 2070744 -+ Heterozygous	Nitric Oxide Synthase 3 is an enzyme that allows for the production of nitric oxide from L- arginine. Nitric oxide is needed for vasodilation of arteria vessels and plays a major role in heart health. With this gene mutation, deficiencies in nitric oxide may be a concern. This can lead to ischemic stroke, myocardial infarction, essential hypertension, pre-eclampsia, and Alzheimer's. Consider getting your NO levels checked and/or supplement with L- arginine. Talk with your functional medicine provider before using supplementation. Be sure to have full cardiometabolic lab work done twice a year.
NQO1 s1800566 Wild Type	NAD(P)H Quinone Dehydrogenase 1 Mutations in this gene have been associated with breast cancer, lung cancer, tardive dyskinesia, and Alzheimer's.
PEMT rs4244593 Wild Type rs4646406 ++ Homozygous rs7946 ++ Homozygous	Phosphatidylethanolamine N-Methyltransferase Mutations in this gene may lead to deficiencies in phosphatidylcholine, a phospholipid needed for cell membrane integrity. Health concerns related to this class of gene mutations include: endometriosis, orofacial clefts, and non-alcoholic fatty liver disease. Phosphatidylcholine is the precursor to Acetylcholine, a neurotransmitter responsible for memory formation. Clinically we have observed increased memory retention and function with Phosphatidylcholine supplementation with these SNPs. Discuss supplementation with your practitioner.

MaxGen

PON1 rs662 Wild Type	paraoxonase 1 gene This gene allows for the breakdown of toxic chemicals, especially pesticides, medications, and heavy metals. Mutations in this gene allow for susceptibility to heart disease, diabetes, atherosclerosis, and pesticide poisoning. This is especially critical for microvascular issues related to eyesight in diabetes. Make sure you are choosing organic food sources and avoiding pesticide use. Some advanced laboratories offer pesticide and environmental toxin
Prothrombin rs1799963 Wild Type	Coagulation factor II, thrombin This gene is needed for proper blood coagulation. Mutations in this gene lead to an increase of thrombosis, loss of pregnancy, and cerebral stroke. Follow an anti- inflammatory, Mediterranean Diet. Discuss testing options with your physician.
SHMT rs1979277 Wild Type	Serine Hydroxy methyltransferase 1 RS1979277 SNPs can reduce the function by up to 50%. Research suggests this gene is associated with Adult Acute Lymphocytic Leukemia and cardiovascular disease. SNPs here can lower glycine levels in the body resulting in decreased glutathione and cartridge production. Consider increasing glycine containing foods. As well, this can SNP can increase Uracil levels and is potentially implicated in some cancers. B6 in the P-5-P form may be beneficial to helping SHMT function.
SLC19A1 rs1051266 ++ Homozygous	This gene regulates the transport and levels of intracellular folate. Consider RBC folate testing and supplementation. This gene is associated with methotrexate metabolism difficulty and colorectal cancer. Synthetic Folic acid should be avoided.
SOD1 rs2070424 Wild Type rs4998557 Wild Type	superoxide dismutase 1 This gene encodes for superoxide dismutase, and enzyme that binds with copper and zinc to break down free radicles. Mutations in this gene are associated with amyotrophic lateral sclerosis (ALS), which is a disease characterized by muscle weakness and wasting. It is thought that this mutation increases the chance of oxidative stress on the motor
SOD2 rs2758331 -+ Heterozygous rs4880 -+ Heterozygous	Superoxide dismutase 2 Mutations of this gene have been linked to idiopathic cardiomyopathy, premature aging, cancer, and sporadic motor neuron disease. Consider SOD supplementation.
SOD3 rs1799895 Wild Type	Superoxide dismutase 3 This gene is associated with riding the body of free radicals and oxidative stress; however, this mutation is linked to an increase of oxidative stress. This gene mutation is associated with copper and folate pathways. Consider SOD supplementation.

SUC rs7297662 rs773115)X -+ Heterozygous Wild Type	Sulfite oxidase This gene encodes for an enzyme that is needed in the final stages of degradations of sulfur containing amino acids, cysteine and methionine. Specifically the degradation of Sulfite into sulfate. Mutations in this gene are linked to early childhood neurological conditions, especially seizures and sulfite sensitivities. Consider molybdenum supplementation to help improve SUOX activity.
TCN 2 rs526934 rs1801198	1/2 Wild Type Wild Type	Transcobalamin 1 This gene is necessary for the transportation of vitamin B12. With a mutation here, consider testing and supplementation with methylcobalamin. Research suggests difficulty with digestion and stomach acid. With a mutation in this gene, B12 levels may be low. Peripheral neuropathy is common with this deficiency. Consider intracellular nutrient testing and B12 supplementation.
TN rs1800629	Wild Type	Tumor necrosis factor This gene is responsible for creating a pro-inflammatory cytokine that has a number of duties, including cell proliferation and differentiation, apoptosis, and lipid metabolism. A mutation here can lead to cancer, autoimmune disease, and insulin resistance. It has been specifically connected to rheumatoid arthritis, juvenile idiopathic arthritis, migraines, asthma, and narcolepsy. Follow a low-inflammatory diet and work with a functional medicine provider to reduce autoimmune chances.
VD	R	VDR
rs731236	Wild Type	This gene encodes for the receptor site of vitamin D, which is responsible for regulating
rs1544410	Wild Type	calcium and phosphate. Health concerns that are directly connected to a mutation in this
rs2228570	Wild Type	

Client: Your genotype.

Minor: The genotype that is found least in nature.

Wild Type: The genotype that is found most often in nature, this is reported as green. This isn't always ideal. Homozygous: This means you tested for both copies of the minor type allele. This typically has more severe issues. Heterozygous: This means you tested for one copy of the minor allele and one copy of the wild type allele. Gene: This is the specific gene we are looking at for variations.

RS#: This is the specific variation within the gene. There are multiple locations within a gene for potential variations, all of which can indicate a different issue or severity.

Disclaimer: This test was developed by MaxGen Labs, LLC and has not been approved by the FDA. It is not intended to diagnose, treat, cure or prevent disease. This test should be considered for educational purposes only. Do not make decisions about your health without discussing it with a licensed practitioner. The information contained within the report does not consider other genetic variations or environmental factors that might contribute to someone's phenotype or symptoms. This test does not analyze all variations within a gene that someone might carry. The rs#'s contained within the report were picked from scientific literature, multiple physician collaborations, and clinical observation by MaxGen Labs and are subject to change at any time.